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Abstract 
Whether they are modeling bookmarking behavior in Flickr 
or cascades of failure in large networks, models of diffusion 
often start with the assumption that a few nodes start long 
chain reactions, resulting in large-scale cascades. While rea-
sonable under some conditions, this assumption may not 
hold for social media networks, where user engagement is 
high and information may enter a system from multiple dis-
connected sources.  
 Using a dataset of 262,985 Facebook Pages and their as-
sociated fans, this paper provides an empirical investigation 
of diffusion through a large social media network. Although 
Facebook diffusion chains are often extremely long (chains 
of up to 82 levels have been observed), they are not usually 
the result of a single chain-reaction event. Rather, these dif-
fusion chains are typically started by a substantial number 
of users. Large clusters emerge when hundreds or even 
thousands of short diffusion chains merge together. 
 This paper presents an analysis of these diffusion chains 
using zero-inflated negative binomial regressions. We show 
that after controlling for distribution effects, there is no 
meaningful evidence that a start node’s maximum diffusion 
chain length can be predicted with the user’s demographics 
or Facebook usage characteristics (including the user’s 
number of Facebook friends). This may provide insight into 
future research on public opinion formation. 

Introduction   
Diffusion models have been used to explain phenomena 
ranging from social movement participation to the spread 
of contagious diseases. Some of these models (e.g. Gruhl et 
al. 2004; Leskovec et al. 2007; Newman 2002) are an ex-
tension of epidemiological models of contagion, such as 
SIR or SIRS (Anderson and May 1991), while others in-
troduce network-based features, such as thresholds for 
adoption (Centola and Macy 2007). While these models 
have contributed to our understanding of how diffusions 
spread across a population, most of them start with an iso-
lated event and explore the conditions under which this 
event will trigger a global cascade. Although this is a rea-
sonable approach to understanding certain diffusion prob-
lems, it may not be the best method for modeling the 
spread of information through a social media network. Fur-
thermore, with a few notable exceptions, these models are 
                                                
Copyright © 2009, Association for the Advancement of Artificial Intelli-
gence (www.aaai.org). All rights reserved. 

developed without directly relevant empirical data to in-
form the assumptions and assess the validity of the models. 
In this paper, we use data from Facebook, a social net-
working service with over 175 million active users,1 to 
empirically assess the conditions under which large-scale 
cascades occur within a social networking service. We also 
highlight key differences between cascades in social media 
and cascades that result from a single isolated event.  
 How is diffusion currently modeled? A basic contagion 
model starts with an event, which propagates through a 
network by spreading along the ties between infected and 
susceptible nodes. Theoretical models without an empirical 
basis often focus on isolating the importance of specific 
characteristics relevant to the diffusion process. Percola-
tion models can isolate the relationship between transmis-
sion probability and the spread of an infection through a 
network (Moore and Newman 2000), while models focus-
ing on structural and individual characteristics assess the 
impact of network topology or various thresholds for adop-
tion (Granovetter 1978) on the likelihood of a cascade.  
 One of the most prominent models of the effect of net-
work topology on diffusion shows that rapid global cas-
cades are possible on highly clustered networks even with 
few ties connecting otherwise disconnected clusters (Watts 
and Strogatz 1998). More general models suggest that the 
likelihood of a global cascade – defined as a cascade that 
eventually reaches a sufficiently large proportion of the 
network – varies with network connectivity, degree distri-
bution, and threshold distribution (Centola and Macy 2007; 
Watts 2002).  
 In addition to adoption thresholds and network topology, 
diffusion models also assess the importance of influence 
and connectedness at the level of the individual node. 
Watts and Dodds (2007) recently published a model spe-
cifically designed to determine whether or not “influen-
tial,” or well-connected, nodes are more likely to trigger a 
global cascade. Their findings, which suggest that influen-
tial nodes are no more likely to trigger cascades than aver-
age nodes, run counter to popular suggestions from Glad-
well (2000) and others that the key to mass popularity is to 
identify and reach a small number of highly influential ac-
tors (after which everyone else will be reached, essentially 
for free). These models have significant practical implica-
tions for marketers, particularly those who are interested in 
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advertising through social media. However, practitioners 
and researchers in this area can also benefit from empirical 
models of how information spreads in social networks. 
 Models starting from an empirical base typically involve 
an algorithm that predicts the observed behavior of infor-
mation propagation. These are commonly developed using 
blog or web data due to the availability of accurate infor-
mation regarding links and the time at which data was 
posted or transmitted. Analysis of link cascades (Leskovec 
et al. 2007) and information diffusion (Gruhl et al. 2004) in 
blogs, as well as photo bookmarking in Flickr (Cha et al. 
2008), can all be modeled by variations on standard epi-
demiological methods. Models of social movement partici-
pation and contribution to collective action (Gould 1993; 
Oliver, Marwell, and Teixeira 1985) are often tied to an 
empirical foundation, but with some exceptions (Macy 
1991; Oliver, Marwell, and Prahl 1998) these do not focus 
as strongly on network properties and cascades. 
 In most network models of diffusion, the contagion is 
triggered by a fairly small number of sources. In some 
cases (e.g. Centola and Macy 2007; Watts and Strogatz 
1998), the models are explicitly designed to assess the im-
pact of an isolated event on the network as a whole. In 
other cases, such as in blog networks, the way information 
is introduced lends itself to scenarios where one or a few 
sources may trigger a cascade. This start condition there-
fore makes sense both in models focused on the endoge-
nous effects of diffusion and in models based on empirical 
scenarios in which a few nodes initiate cascades. However, 
it does create a particular conceptualization of how diffu-
sion processes work. At the basis of these models is the as-
sumption that a small number of nodes triggers a large 
chain-reaction, which is observed as a large cascade. This 
assumption may not hold in social media systems, where 
diffusion events are often related to publicly visible pieces 
of content that are introduced into a particular network 
from many otherwise disconnected sources. Information 
will not necessarily spread through these networks via 
long, branching chains of adoption, but may instead exhibit 
diffusion patterns characterized by large-scale collisions of 
shorter chains. Some evidence of this effect has already 
been observed in blog networks (Leskovec et al. 2007). 
 Even if this initial assumption is valid and cascades in 
social media are started by a tiny fraction of the user popu-
lation, these models typically lack external empirical vali-
dation. Accurate data on social network structures and 
adoption events are difficult to collect and has not been 
readily available until fairly recently. In the cases where 
diffusion data have been tracked, it typically does not in-
clude the fine-grained exposure data necessary to fully 
document diffusion. Given the earlier data limitations fac-
ing empirical studies of diffusion, the primary goal of this 
study is to provide a detailed empirical description of large 
cascades over social networks.  
 Using data on 262,985 Facebook Pages, this paper pre-
sents an empirical examination of large cascades through 
the Facebook network. We first describe the process of 
Page diffusion via Facebook’s News Feed, after which we 

provide introductory summary statistics that describe the 
chains of diffusion that result. Unlike previous empirical 
work, the data we present include every user exposure and 
cover millions of individual diffusion events. We assess 
the conditions under which large cascades occur, with a 
particular focus on analyzing the number of nodes respon-
sible for triggering chains of adoption and the typical 
length of these chains. We then provide a detailed analysis 
of 179,010 “chain starters” over a six-month period start-
ing on February 19, 2008 and investigate how their demo-
graphics and Facebook usage patterns may predict the 
length of the diffusion chains that they initiate.  

Mechanics of Facebook Page Diffusion 
Diffusion on Facebook is principally made possible by 
News Feed (Figure 1), which appears on every user’s 
homepage and surfaces recent friend activity such as pro-
file changes, shared links, comments, and posted notes. An 
important feature of News Feed is that it allows for passive 
information sharing, where users can broadcast an action to 
their entire network of friends through News Feed (instead 
of active sharing methods such as a private message, where 
a user picks a specific recipient or recipients). These stories 
are aggregated and filtered through an algorithm that ranks 
stories based on social and content-based features, then 
displayed to the friends along with stories from other users 
in their networks. 
 To analyze how ideas diffuse on Facebook, we concen-
trate on the News Feed propagation of one particularly vi-
ral feature of Facebook, the Pages product. Pages were 
originally envisioned as distinct, customized profiles de-
signed for businesses, bands, celebrities, etc. to represent 
themselves on Facebook. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 1. Screenshot of News Feed, Facebook’s principal method 
of passive information sharing. 

  
 



Since the original rollout in late 2007, hundreds of thou-
sands of Pages have been created for almost every con-
ceivable idea. Pages are made by corporations who wish to 
establish an advertising presence on Facebook, artists and 
celebrities who seek a place to interact with their fans, and 
regular users who simply want to create a gathering place 
for their interests. 
 Users interact with a Page by first becoming a “fan” of 
the Page; they can then post messages, photos, and various 
other types of content depending on the Page’s settings. As 
of March 2009, the most popular Facebook Page was  Ba-
rack Obama’s Page,2 with over 5.7 million fans. 
 When users become fans of a particular Page, their ac-
tion may be broadcast to their friends’ News Feeds (see 
Figure 2). An important exception is that the users may 
elect to delete the fanning story from their profile feed 
(perhaps to reduce clutter on their profile, or because they 
do not want to draw too much attention to their action). In 
this case, the story will not be publicized on their friends’ 
News Feeds. 
 Diffusion of Pages occurs when 1) a user fans a Page; 2) 
this action is broadcast to their friends’ News Feeds; and 3) 
one or more of their friends sees the item and decides to 
become a fan as well. 

 
 
 
 

 
Figure 2. Sample News Feed item of Page fanning. 

  
 Without News Feed diffusion, we might expect that 
Pages acquire their fans at a roughly linear pace. However, 
since Facebook users are so active, actions such as Page 
fanning are quickly propagated through the network.  As a 
result, we see frequent spikes of Page fanning, presumably 
driven by News Feed.  
 To motivate our subsequent analyses, Figure 3 shows 
the empirical cumulative distribution function of Page fan 
acquisition over time (the x-axis) for a random sample of 
20 Pages. Each graph starts at the Page creation date and 
ends at the end of the sample period (August 19, 2008). 
From just this small sample of Pages, we see that there is 
no obvious pattern; clearly, Pages acquire their fans at 
highly variable rates. This paper will provide some insight 
into this phenomenon after the following section, which 
provides a more detailed description of the data used in the 
analysis.  

Data 
 In this paper, we analyze Page data by creating trees that 
link actors and followers for each Page on Facebook. We 
measure diffusion via levels of a chain, as shown in Figure 
4. An important note is that due to News Feed aggregation, 
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 Figure 3. Empirical CDFs of Page fanning over time for a 

random sample of 20 Pages. 
 
users may see multiple friends perform a Page fanning ac-
tion in a single News Feed story. For example, Charlie may 
see the following News Feed story: “Alice and Bob be-
came a fan of Page XYZ.”  In this case, Charlie’s node on 
the tree would have two parents. Furthermore, if Alice and 
Bob were on separate diffusion chains, the two chains have 
now merged. We extract every such chain from server logs  
that record fanning events and News Feed impressions for 
all of the Pages in our sample. 
 
 
 
 
 
 
 

 
Figure 4. A possible diffusion chain of length 1. 

 
We infer links of associations based on News Feed im-

pressions of friends’ Page fanning activity: if a user Ua saw 
that friend Ub became a fan of Page P within 24 hours prior 
of Ua becoming a fan, we record an edge from the follower 
Ub to the actor Ua. The 24-hour window is a logical break-
point that allows us to account for various methods of Page 
fanning (e.g., clicking a link on the News feed, navigating 
to the Page and clicking “Become a Fan,” etc.) without be-
ing overly optimistic in assigning links. As we create larger 
trees, some users (i.e., fans in the middle of a chain) may 
become both actors and followers; some users may be ac-
tors but not followers (the chain-starters); and some users 
can be followers but not actors (the leaves of the chains). 

Our dataset consists of all Facebook Pages created be-
tween February 19, 2008 and August 19, 2008, and all of 
their associated fans (as of August 19, 2008). These data 
include 262,985 Pages that contained at least one diffusion 
event. Because any Facebook user can create a Page about 
any topic, there are a large number of Pages with just a few 



fans. We will therefore limit our discussion to the subsets 
of these Pages that allow us to present more meaningful 
summary statistics. 

Previous cascade models typically have an assumption 
of a “global cascade,” which involves the finite subgraph 
of susceptible individuals on an infinite graph (Watts 
2002). Our data represent the entire network of people who 
became a fan of a given Page before our cutoff date of 
August 19, 2008. Since these data do not present a clear 
definition of susceptibility, we assume that for popular 
Pages, the susceptible population consists of those that 
have adopted; in other words, for comparison’s sake, we 
assume these diffusion events are large enough to be con-
sidered global cascades. 

Chains Dataset 
In addition to our general Pages data, we wish to observe 
the characteristics of chain length variation for different 
chain-starters. Due to the computational complexity of this 
particular analysis, we study this phenomenon by creating 
a chains dataset of 10 Pages and all 399,022 of their asso-
ciated fans as of August 19, 2008 (of the 399,022 fans, 
179,010 were chain-starters and 220,012 were followers). 
Each of these Pages was at least 40 days old as of the end 
of the analysis period and had at least 7,500 fans at that 
point. Given these criteria, a set of Pages were randomly 
selected and filtered to remove overlapping subjects and 
unrecognizable/foreign content that would be difficult for 
the authors to interpret. For each of these Pages, we 
gathered all of their associated fans and calculated the 
maximum chain length for each fan that started chains. We 
also collected various user-level features, such as age, gen-
der, friend count, and various measures of Facebook activ-
ity. All data were analyzed in aggregate, and no personally 
identifiable information was used in the analysis. Table 1 
shows the summary statistics for these Pages. 
 The next section discusses an analysis of the “large-
clusters” phenomenon using the global Pages dataset. We 
then present an examination of the maximum chain length 
for each chain starter using the smaller chains dataset.  

Large-Clusters Phenomenon 
When the process described in Figure 4 is allowed to con-
tinue on a large scale, the result is that a flurry of chains, 
all started by many people acting independently, often 
merges together into one huge group of friends and ac-
quaintances. This merging occurs when one person fans a 
Page after seeing two or more friends (who are on separate 
chains) fan that same Page. 
 A case in point is a Page devoted to a popular European 
cartoon, Stripy.3 The diagram in Figure 5 shows the car-
toon's close-knit communities of fans in both Bosnia  
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Page Name Date 
Created # Nodes 

% in  
Biggest 
Cluster 

% Single-
tons 

Max Chain 
Length 

The 
Goonies 6/7 7,936 55.38% 14.37% 57 

City of 
Chicago 4/6 9,277 20.91% 54.97% 23 

Fudd-
ruckers 3/17 10,269 43.71% 36.30% 27 

Tom Cruise 5/28 28,592 56.67% 28.44% 41 

Usain Bolt 6/1 33,967 37.03% 31.28% 14 

Damian 
Marley 3/24 40,594 21.05% 45.91% 23 

Stanley 
Kubrick 3/21 41,620 28.82% 40.30% 28 

Cadbury 3/18 57,011 76.50% 16.39% 44 

Zinedine 
Zidane 2/24 76,624 59.31% 25.95% 55 

NPR 2/20 93,132 24.72% 33.63% 34 

Table 1. Summary statistics for the chains dataset. 
 
(squares) and Slovenia (triangles). A few fans serve as the 
“bridge” that brings the two groups together. A third clus-
ter of Croatian fans (diamonds, shown in the bottom-right 
cluster) hasn’t yet found its connecting bridge. Finally, 
there are a few fans from other countries (circles) scattered 
within the two large clouds, perhaps Bosnian and Slove-
nian expatriates! 
 

 
Figure 5. Trees of diffusion for the Stripy Facebook Page.  

 
 



In fact, for some popular Pages (not part of our chains 
dataset), more than 90% of the fans can be part of a single 
group of people who are all somehow connected to one an-
other. Typically, each of these close-knit communities con-
tains thousands of separate starting points—individuals 
who independently decide to fan a particular Page. 
 As an example, as of August 21, 2008, 71,090 of 96,922 
fans (73.3%) of the Nastia Liukin (an American Olympic 
gymnast) Page were in one connected cluster. Because the 
Beijing Olympics were going on at the time, there was a 
high latent interest in the Page. So, users were highly likely 
to fan the Page if a friend alerted them to its existence via 
News Feed’s passive sharing mechanism. 
 This large-cluster effect is widespread, especially for re-
cent Pages (it is more likely for older Pages to have distinct 
waves of fanning): for Pages created after July 1, 2008, for 
example, the median Page had 69.48% of its fans in one 
connected cluster as of August 19, 2008. A natural ques-
tion is to wonder how these large clusters come about: are 
these clusters started by a very small percentage of the 
nodes, as is commonly assumed in the literature? Or does a 
different pattern emerge? 
 We analyze these data by looking at each Page and cal-
culating the size of each cluster of fans. Each cluster con-
sists of chains that have merged via the aggregated News 
Feed mechanism described earlier. For many Pages, the 
size of the largest cluster is orders of magnitude larger than 
the second-largest cluster: in the Nastia Liukin example, 
the second-largest connected cluster (after the 71,090-fan 
connected cluster) has only 30 fans. 

After looking at the distribution of “start nodes” and 
“follower nodes” in these clusters, we find no evidence to 
support the theory that just a few users are responsible for 
the popularity of Pages. Instead, across all Pages of mean-
ingful size (>1000 fans), an average of 14.8% (SD 7.9%) 
of the fans in each Page’s biggest cluster were start nodes 
(for Pages of under 1000 nodes, the effect is also present, 
though variance increases). 

Each of these fans arrived independently (presumably by 
searching for the Page via Facebook Search or from an ad-
vertisement) and started their own chains, which eventually 
merged together as the rest of the fan base took shape. 
These patterns hold fairly consistently for Pages with a few 
thousand fans and for those with more than 50,000: for 
Pages with 5000 fans or more, the average is 14.9% (SD 
6.4%), and for Pages with 50,000 fans or more, the average 
rises to 17.1% (SD 4.8%). 

Chains merge frequently because nodes in the graph 
typically have more than one parent. For all Pages with at 
least 100 fans, the average node in the largest cluster for 
each Page has a degree of 2.676 (SD 0.607). This figure 
increases to roughly 3 when the number of fans increases 
beyond 1000. 
 The rest of this paper investigates the aforementioned 
start nodes that begin chains of diffusion.  

Prediction of Maximum Chain Length 
Knowing that a large percentage of a Page’s fans start 
page-fanning chains, we wish to further investigate what 
qualities separate these individuals from those that adopt 
via diffusion. Specifically, we wish to investigate the ques-
tion: given the demographic and Facebook usage statistics 
of each start node, can we predict the node’s maximum 
chain length? 

Table 2 presents some summary statistics of our chains 
dataset to get better acquainted with the users that start 
chains. In our chains dataset, starters make up 46.32% of 
the users in the full dataset and 16.91% of the users in the 
largest cluster of each Page. 
 
 Starters Non-Starters 
 Mean SD Mean SD 

Age 24.65 9.82% 24.07 9.00% 
Male 53.29%  55.60%  

Facebook-age 411.44 342.94 408.64 276.23 
Friend-count 251.38 270.11 198.16 176.11 

Activity-count 1.93 8.80 1.54 7.65 
Table 2. Summary statistics for the chains dataset. All differences 

are statistically significant using a two-sample t-test. 
 
Facebook-age denotes how long the user has been a 

member of Facebook, in days. Activity-count is a proxy to 
user activity, combining the total number of messages, 
photos, and Facebook wall posts added by the user.   

We see that starters and non-starters have fairly similar 
statistics. However, start nodes tend to have more Face-
book friends than their non-starter counterparts and have 
slightly larger Facebook-ages. Furthermore, as evidenced 
by the higher variation in activity_count, more of the start 
nodes are very active Facebook users. A likely explanation 
is that starters tend to be more frequent users of Facebook 
(evidenced by their increased content production), so they 
are more familiar with the interface and more likely to 
search for new Pages to fan. Non-starters, on the other 
hand, are more passive users of Facebook and are thus less 
likely to start diffusion chains. 

Analysis of Start Nodes 
 For each of the 179,010 start nodes in our data, we cal-
culate all the chains of diffusion and find each user’s 
maximum-length chain. This value, max_chain, is the re-
sponse variable in our data. For the Pages in our dataset, 
values range from 0 to 56. The data are heavily skewed to 
the right, indicating the presence of many short chains. Se-
lected percentiles of max_chain are given below. 
 
0%-67% 68% 75% 90% 95% 98% 

0 1 1 3 5 10 
 

However, we know for a fact that there are excess zeros 
in our max_chain data: if a user fans a Page and immedi-



ately deletes it from their profile feed, the story will no 
longer be eligible for broadcasting to their friends’ News 
Feeds, regardless of how popular the user is. Thus, 
max_chain will always be exactly zero in this scenario. 
Data on excess zeros are not available, so for illustrative 
purposes we present selected percentiles of max_chain 
where all zeros have been deleted: 

 
25% 50% 60% 75% 95% 98% 

1 2 3 3 11 18 
 

 Typically, Poisson regression is used to model count re-
sponse variables. However, Poisson random variables are 
expected to have a mean equal to its variance, which is 
clearly not the case here (where the variance far exceeds 
the mean). Instead, we use negative binomial regression, 
which is appropriate when variance >> mean. To correct 
for the excess zeros, we use a zero-inflation correction. 
This procedure allows us, in a single regression, to select 
variables that contribute to the true content in the response 
variable (“count model coefficients”) and also a (poten-
tially different) set of variables that contribute to the excess 
zeros in the response (“zero-inflation model coefficients”). 
 The response variables for the count model are: 
• log age  
• gender 
• log Facebook_age (number of days the user has been a 
member of Facebook) 
• log activity_count (messages sent + photos uploaded + 
Facebook wall posts sent) 
• log friend_count (number of Facebook friends) 
• log feed_exposure (number of friends who saw the News 
Feed story broadcasting the user’s fanning action) 
• log popularity (number of friends that “care about” the 
start node high enough that the News Feed algorithm con-
siders broadcasting the start node’s Page fanning story) 
   

The variables age, gender, Facebook-age, and activity-
count are used for the zero-inflation model. We assume 
that the number of friends and level of News Feed expo-
sure would not impact the probability of deleting the Page 
fanning story from a user’s profile feed. 
 Table 3 presents the correlation matrix for these vari-
ables. There is a fairly high correlation between 
friend_count, feed_exposure, and popularity, but it may 
still be useful to include these in the model. 
 
 
 
 
 
 
 

 1 2 3 4 5 6 7 8 

1. max_chain 1.00 -0.07 0.00 0.05 0.00 0.17 0.28 0.04 

2. age -0.07 1.00 -0.06 0.11 0.07 -0.15 0.07 0.07 

3. gender 0.00 -0.06 1.00 -0.03 -0.08 0.06 -0.01 -0.15 

4. facebook_age 0.05 0.11 -0.03 1.00 0.10 0.33 0.37 0.19 

5. activity_count 0.00 0.07 -0.08 0.10 1.00 0.20 0.12 0.34 

6. friend_count 0.17 -0.15 0.06 0.33 0.20 1.00 0.45 0.51 

7. feed_exposure 0.28 0.07 -0.01 0.37 0.12 0.45 1.00 0.32 

8. popularity 0.04 0.07 -0.15 0.19 0.34 0.51 0.32 1.00 
Table 3. Correlation matrix for model variables. 

  
We run a standard zero-inflation negative binomial 

(“ZINB”) model with starting values estimated by the ex-
pectation maximization (EM) algorithm. Standard errors 
are derived numerically using the Hessian matrix.  
 The ZINB coefficients for the pooled model (all 10 
Pages) are shown in Table 4.  
 

Count model coefficients (negbin with log link): 
 Estimate Std. Error Pr(>|z|)  
(Intercept) 2.346007 0.083646 < 2e-16 *** 
age -0.814130 0.016249 < 2e-16 *** 
gender==male -0.084873 0.010606 1.22e-15 *** 
Facebook_age -0.379611 0.010994 < 2e-16 *** 
activity_count -0.056424 0.007047 1.18e-15 *** 
friend_count 0.067955 0.008139 < 2e-16 *** 
feed_exposure 0.929996 0.005766 < 2e-16 *** 
popularity -0.206341 0.005110 < 2e-16 *** 
Log(theta) -0.960615 0.007173 < 2e-16 *** 
     
Zero-inflation model coefficients (binomial with logit link): 
 Estimate Std. Error Pr(>|z|)  
(Intercept) 24.42513 1.91443 < 2e-16 *** 
age -0.06867 0.20232 0.73430  
gender==male -0.18038 0.14023 0.19834  
Facebook_age -5.31638 0.33802 < 2e-16 *** 
activity_count -0.51408 0.17925 0.00413 ** 
---     
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
Theta = 0.3827 
Number of iterations in BFGS optimization: 1  
Log-likelihood: -2.045e+05 on 14 Df 

Table 4. Coefficients for the ZINB model. 
 

To ensure significance of our model, we run a likelihood 
ratio test: 
 

     Df  LogLik  Df  Chisq  Pr(>Chisq)     
1    14  -204532                          
2    3   -224739 -11 40414  < 2.2e-16 *** 
 



Here, Model 1 is the ZINB model calculated earlier, and 
Model 2 is max_chain regressed only on a constant term. 
The p-value is < 0.001, ensuring that our model is signifi-
cant. However, we also wish to confirm that the ZINB 
model is an improvement over a standard negative bino-
mial regression model with the same coefficients (that is, 
without the zero-inflation correction). 

This can be accomplished by running a standard nega-
tive binomial regression (not shown here) and comparing 
the two models with the Vuong test (Vuong 1989). The 
Vuong test gives a small p-value if the zero-inflated nega-
tive binomial regression is a statistically significant im-
provement over a standard negative binomial regression. 
 

Vuong Non-Nested Hypothesis Test-Statistic: 
7.602584  
(test-statistic is asymptotically distributed 
N(0,1) under the null that the models are 
indistinguishible) 
model1 > model2, with p-value 1.454392e-14  

 
Model 1 is the ZINB model; model 2 is the regular nega-

tive binomial model. The Vuong test reports a p-value < 
0.001, so we conclude that the ZINB model is significant. 

In Table 5, we present the count model coefficients for 
ZINB models on a selection of individual Pages from our 
chains dataset (coefficients significant at the 5% level are 
in bold). For all of these regressions, the likelihood ratio 
test and Vuong tests were significant at the 5% level. 

 
Variable Goon. Fudd Cruise Bolt Zidane 

(Intercept) -0.097 2.574 1.419 0.596 -0.105 
age 0.509 -0.537 -1.006 -0.386 -0.981 
gender==male 0.186 -0.011 -0.076 -0.144 0.116 
Facebook_age -0.654 -0.522 -0.052 -0.415 0.153 
activity_count 0.019 -0.102 -0.142 -0.064 -0.100 
friend_count -0.480 -0.220 0.087 -0.023 0.009 
feed_exposure 1.379 1.279 1.008 0.860 1.053 
popularity 0.084 -0.014 -0.245 0.021 -0.120 

Table 5. Count model coefficients for selected Pages. 

Analysis of Chains Regressions 
The zero-inflation model coefficients represent the in-
creased probabilities of zero-inflation; that is, the probabil-
ity that a user immediately removes the Page fanning story 
from their profile and constrains their max_chain to zero. 
Since this is not a focus of this paper, we concentrate in-
stead on the count model coefficients. 
 We note that in the pooled model, all count model coef-
ficients are highly statistically significant. However, this is 
not surprising given the large sample sizes observed here. 
If we run the same ZINB model using data from each Page 
separately, we find that the signs on every variable fre-
quently flip from positive to negative, with the exception 
of feed_exposure. Furthermore, our coefficients from the 
pooled model are generally quite small: for example, the 

coefficient on log activity_count is -0.056424, which im-
plies that a 1% increase in activity_count is only expected 
to decrease the log of max_chain by 0.056%. We might 
expect that highly active users are more likely to have their 
News Feed actions ignored, but this is a trivial decrease 
that is not realistically meaningful. 
 When comparing the results from the pooled model with 
results from the individual Page models, we see that the 
only consistently significant effect is for feed_exposure, 
which is a control for the number of friends who saw the 
News Feed story broadcasting the user’s fanning action. 
This coefficient consistently hovers around 1, which indi-
cates that if the News Feed algorithm decides to publish 
the user’s action to 1% more people, we would expect a 
1% longer max_chain to result. This result holds even after 
controlling for distribution (via the popularity variable) 
and for the number of friends. 

The most interesting finding seems to be that after con-
trolling for feed_exposure, the log friend_count variable 
does not have a realistically meaningful coefficient 
(0.067955, meaning that a 1% increase in friend_count is 
only expected to increase the log of max_chain by 
0.068%). That is, after controlling for News Feed exposure 
variables, neither demographic characteristics nor number 
of Facebook friends seems to play an important role in the 
prediction of maximum diffusion chain length. 

Conclusions and Future Work 
Our examination of Facebook Pages shows that large-

scale diffusion networks play a significant role in the 
spread of Pages through Facebook’s social network. For 
many Pages with large followings, the majority of fans oc-
cur in a single connected cluster of diffusion chains that 
merge together to form a global cascade. The structure of 
these clusters reveals several important aspects of the em-
pirical nature of global cascades. First, we find that within 
most clusters, roughly 14-18% of the nodes are chain ini-
tiators, which differs from the more restricted start condi-
tions generally assumed in the theoretical literature. While 
it is easier to discuss theoretical underpinnings of a global 
cascade by disallowing exogenous diffusion, we find that 
this may not lead to a completely accurate conceptualiza-
tion of the media diffusion observed in our studies. 
 We also find that because of the connectivity of the 
Facebook network and the ease of Page fanning, the 
maximum length of diffusion chains from initiator nodes 
can sometimes be extremely long, especially in comparison 
to the diffusion chains that have been observed in other 
empirical studies of real-world phenomena. In fact, we 
have observed chains of up to 82 levels in our complete 
dataset. It may be interesting for marketers and practitio-
ners to note that when compared to real-life studies of dif-
fusion, Facebook chains of Page fanning tend to be longer-
lasting and involve more people: in a study of word-of-
mouth diffusion of piano teachers, Brown and Reingen 



(1987) found that only 38% of paths involved at least four 
individuals. Using the same definition on our data, we find 
that for a random sample of 82,280 Pages, 86.4% of paths 
of Page diffusion involve at least four individuals. This re-
sult may be useful for potential advertisers considering a 
Facebook marketing campaign versus more traditional 
word-of-mouth methods. 

The properties of these diffusion clusters on Facebook 
suggest a new characterization of global cascades: whereas 
the theoretical literature generally assumes that a global 
cascade is an event that begins with a small number of ini-
tiator nodes that are able to affect vulnerable neighbors, we 
find that global cascades are in fact events that begin at a 
large number of nodes who initiate short chains; each of 
these chains quickly collide into a large single structure. 

In addition, we investigate the length of the diffusion 
chain that each initiator triggers in order to understand 
whether there are aspects of certain initiator nodes that 
help determine the eventual impact of those initiators on 
the overall diffusion cluster. We find that after controlling 
for distribution access and popularity, a particular initia-
tor’s demographic properties and site usage characteristics 
do not appear to have any meaningful impact on that 
node’s maximum diffusion chain length. The only way to 
increase maximum diffusion chain length, in fact, is to in-
crease the likelihood that a Page fanning action appears in 
other users’ News Feeds. Thus, there may not be a simple 
and easy way to identify initiators that “matter most,” and 
it may be that a wide variety of individuals are equally 
likely to trigger a large global cascade. 

These results are undoubtedly tied to the unique setting 
of our study. Our observations may partially be shaped by 
social behavior that is specific to Facebook: for example, 
the distinct characteristics of the Facebook user population, 
the specific social norms that dictate interaction and influ-
ence on the site, and the ways that users perceive and relate 
to Facebook Pages in contrast to other forms of content. In 
addition, our findings may hinge on the nature of the News 
Feed algorithm that determines which activity to surface, 
how that information is displayed, and for how long it is 
exposed to the user. Nevertheless, our conclusions remain 
important; they are the results of the first study of a large 
number of real contagion events on a social network that 
accurately captures the genuine social ties that exist be-
tween people in the real world. 

Further research can expand our empirical understanding 
of contagion in many ways. First, we can explore the prop-
erties of initiator nodes to see whether demographic, social, 
or structural characteristics shape the ability of a node to 
trigger a cascade. In addition, we may want to evaluate 
how accurately various theoretical models of diffusion ac-
count for the empirical phenomena we have uncovered. 
We may also want to test experimental contagion events to 
better understand how different pieces of content and dif-
ferent start conditions determine the eventual structure of a 
diffusion cascade. Finally, we may wish to compare the 

structure and dynamics of the Pages diffusion network to 
other viral features on Facebook, such as Notes (as illus-
trated by the recent “25 Things About Myself” meme, for 
example) and Groups, where diffusion may occur both due 
to News Feed and due to active propagation (i.e., users 
may send invitations to join a group). 
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